Control of Sporeforming Bacteria in RTE Foods during Cooling and Storage

Kathleen A. Glass, Ph.D.

Distinguished Scientist, Associate Director Food Research Institute University of Wisconsin-Madison Madison, Wisconsin United States Email: kglass@wisc.edu

Overview

- Spores of concern
- Factors to control outgrowth
- Validation of formulation and temperature control
 - Predictive models
 - Indicator and surrogates
 - Extended cooling of meats
 - Sous vide foods
 - Shelf stable, low-acid, formulation-safe foods
 - Process cheese
 - Coffee beverages

Spores of concern

- Clostridium perfringens
 - Toxicoinfection; ingestion of high number of cells (10⁶ 10⁷ cells; sporulation in intestine releases toxins
 - Associated with improper hot-holding or during extended cooling
- Bacillus cereus:

- Emetic, diarrheal toxins (requires 10⁶ 10⁷ cells per gram)
- Associated with improperly cooled and stored foods (rice, pasta, custards, soups, meats, vegetables, dairy)
- Clostridium botulinum
 - Potent neurotoxin (level of growth or total populations not known)
 - Associated with low acid foods stored at non-refrigeration temperatures
- Cooking kills vegetative cells but spores and toxins unaffected
 - Potential for spore outgrowth during cooling and storage

Conditions that select for pathogenic spores

- Sous vide cooking
 - "Under vacuum"
 - Typically, low temperature-long time
 - Reduces or eliminate vegetative microbes
 - Most spores survive
 - Some processes, particularly vegetables, include a "nonprot Cbot cook"
 - ■90°C, 10 min
 - Process results in reduced oxygen in intact packages

- Reduced Oxygen Packaging
 - Cooking/hot-fill
 - Including sous vide
 - Modified Atmosphere
 - Plastic or foil overwrap in combination with respiring microbes vs. competitive microbes

- Fish/seafood; packaged fresh mushrooms
- Select for anaerobic microbes e.g., Clostridia sp.
 - Bacillus cereus is a facultative anaerobe so can grow in ROP

5 Factors affecting microbial growth

Temperature, time
pH (acidity)
Water activity (function of moisture/salt)
Other antimicrobials (growth inhibitors)

Effect of temperature on spore outgrowth

- Mesophilic Clostridium botulinum and Bacillus cereus
 - 10°C (50°F) minimum growth temperature under ideal conditions
 - But may take weeks to months grow and produce toxin
 - 12.8°C (55°F) accelerated growth
 - May take only 1 week to grow/produce toxin
- Psychrotrophic strains

- Certain strains of Bacillus cereus; enterotoxin generally at > 10°C (50°F)
- Non-proteolytic Clostridium botulinum
 - VERY slow at 3°C (37°F) under ideal conditions of pH/water activity
 - ► Faster growth at 7.2 and 12.8°C (45 and 55°F)
- Clostridium perfringens
 - <u>VERY</u> slow growth below 20°C (68°F)
 - Typically, a concern during extended cooling or improper hot-holding

Refrigeration alone not dependable

Retail

7

Home Refrigerator

Food Sample Temperatures (after 24h)				
Exceeding temperature	%			
>41°F	17			
>45°F	5			
> 50°F	0.7			
>55°F	0.2			
>60°F	0.2			

⁻% of Products with Temperatures >41°F (4°C)

Ecosure 2007

Challenge studies should consider temperatures > 45°F

FDA Food Code/NACMCF Tables

Table A. Inhibition of sporeforming pathogens at nonrefrigeration conditions

	Critical pH			
Critical A _w	4.6 or less	4.6 to 5.6	>5.6	
0.92 or less	Non-TCS	Non-TCS	Non-TCS	
>0.92-0.95	Non-TCS	Non-TCS	Product Assessment Required	
>0.95*	Non-TCS	Product Assessment Required	Product Assessment Required	

Non-TCS = does not require temperature control for safety

* Clostridium perfringens lower aw growth limit 0.97

Food Antimicrobials ("Preservatives")

Conventional	Clean Label
NaCl	Salt (Reduces available water, a _w)
Lactate, propionate	Cultured sugar, cultured milk
Diacetate, acetic acid	Vinegar (dry vinegar, buffered vinegar)
Nitrite	Cultured celery (convert nitrate to nitrite)
Sorbic acid	Rowanberries
Nisin (bacteriocins)	Culture sugar/ dairy solids
Phenolics, flavonoids	Fruit / spice extracts; coffee extracts
Lactic acid bacteria starter cultures	Protective cultures Competitive microflora In situ acid/bacteriocin production

No single formulation strategy works for all foods

Validation of inhibition of sporeforming pathogens

Getting Started: Use Predictive models

- Pathogen Modeling Program; ComBase*
 - ComBase Perfringens Predictor typically accurate for foods <u>without</u> antimicrobials
 - Validated only in meats, but useful in evaluating cooling deviations
 - B. cereus model only limited to temperatures that are below optimal growth temperatures
 - C. botulinum based on growth and not toxin production
 NEW ARS Prot Cbot model for cooked uncured ground beef
 - NP Cbot enumeration techniques inaccurate

11

Both are currently managed by ARS

Predictive models

- Validated process cheese-C. botulinum model by Tanaka et al., 1986
 - Accurate for standard of identity process cheese sauces
 - 2017 model by Glass et al., for non-standard cheese sauce is being validated and not in Excel form
- Other published C. botulinum models not "user friendly"
 - Meng and Genigeorgis (1993), NP Cbot, lactate, salt, temperature
 - Koukou et al., (2021), NP Cbot, 8 factors

Surrogates or indicators organisms

- Clostridium sporogenes PA3679: thermal surrogate for mesophilic (proteolytic) Clostridium botulinum (canning)
 - Genetically, a mesophilic non-toxigenic C. botulinum
 - Not a validated surrogate for growth inhibition

- Need to be careful of the "real" PA3679 is used; some strains that are labeled PA3679 are not thermal resistant
- Validation ongoing to compare growth inhibition with toxicity
- Other indicators: Bacillus cereus for screening
 - Grows faster than mesophilic C. botulinum at 12.8°C (55°F)
 - More sensitive to some antimicrobials such as nisin
- No appropriate surrogate for NP (psychrotrophic) C. botulinum

Growth comparison of pathogenic spores Uncured turkey, no antimicrobials, extended cooling

3-hour Phase 1 cooling (48.9-26.7°C/120-80°F); 5-hour Phase 2 cooling; 5-hour Phase 3 cooling; 75% moisture product

	pH 6.6 1.2% NaCl	pH 6.6 1.5% NaCl	pH 6.6 1.8% NaCl			
	Average log increase over 0-time					
C. perfringens	3.34	3.16	2.66			
B. cereus	1.12	0.93	0.87			
C. botulinum	-0.09	0.01	-0.10			
Maximum log increase 0.88 log, no toxicity detected in 270 samples assayed						

Effect of antimicrobials on C. perfringens Uncured Turkey: 75% moisture, 1.5% NaCl Extended Phase 1 cool (120-80°F), 1, 2, 3, 4, 5 h

130 120

110 ц_ 100

> 80 70

> > 60 50 40

Degrees 90

P: 1% Dry vinegar C: 1% Dry vinegar-cultured sugar blend

K: 1% Dry vinegar – fruit-spice blend

For illustration purposes only; validation must be done using specific products

16

Effect of temperature on microbial growth and toxin production in sous vide eggs

Sous vide eggs (no antimicrobial, pH 5.8, 0.5% NaCl, aw 0.99)					
	Clostridium botulinum (NP/P)	Bacillus cereus	Spoilage bacteria		
7.2°C	No toxicity 16 wk	No growth 16 wk	0-6 log increase at 4 wk		
			≤0.3 pH unit decrease		
12.8°C	Toxic at 3 wk, but not 2 wk	3.2 log increase at 2 wk	0-4 log increase at 2 wk		
			≤0.2 pH unit decrease		

Take home lesson: Don't depend on spoilage microbes for inhibition

Effect of Dry vinegar, Fruit-Spice Blend, pH, temperature Time to toxin production NP-Prot C. *botulinum Sous vide* Uncured Chicken

			рН 6.15		рН 6.40
Temperatur e °F (°C)	Testing Frequency	Control	0.5% Dry Vinegar + 0.6% Fruit-Spice- Vinegar blend	Control	0.5% Dry Vinegar + 0.6% Fruit-Spice- Vinegar blend
77 (25)	Daily	2 d	4 d	2 d	3 d
55 (12.8)	Monthly	1 mo	1 mo	1 mo	1 mo
45 (7.2)	Monthly	>6 mo	>6 mo	1 mo	3 mo

Antimicrobial delivered via injection of whole muscle Cooked at 170F, 30 minutes Glass et al., unpublished data

1986 FRI Model (*aka* Tanaka Model)

Validated predictive model for safety of shelf-stable process cheese spreads (>50% cheese, ~20% fat)

Moisture, pH, salt, phosphate emulsifier

2017 model by Glass et al. for shelf-stable process cheese sauces with >15% cheese

% moisture	рН	% NaCl	% DSP anh.	total salts	fat	% sorbic acid	Predicte	ed Time (to Failure	(Weeks)
50.0	5.8	2.4	1.6	4.00	20	0		8	
50.0	5.8	2.4	1.6	4.00	20	0.1		88	
50.0	5.8	2.4	1.6	4.00	20	0.2		917	
55.0	5.8	2.4	1.6	4.00	20	0		5	
55.0	5.8	2.4	1.6	4.00	20	0.1		29	
55.0	5.8	2.4	1.6	4.00	20	0.2		188	

TABLE 4. Model parameter significant effects $(P < 0.10)^a$

Variable ^b	χ ²	$Prob > \chi^2$	
pH	101.52	< 0.0001	
Sorbic acid	85.65	< 0.0001	
Moisture	46.59	< 0.0001	
$DSP \times DSP$	31.62	< 0.0001	
NaCl eq	31.18	< 0.0001	
DSP	27.31	< 0.0001	
$pH \times sorbic acid$	19.86	< 0.0001	
Moisture × sorbic acid	17.78	< 0.0001	
NaCl eq \times sorbic acid	8.25	0.0041	
Moisture \times fat	7.67	0.0056	
Fat	5.72	0.0168	
Moisture \times NaCl eq	4.26	0.0390	
Moisture × pH	3.79	0.0516	
K replacement	3.76	0.0526	

^a All linear and quadratic (curvilinear) and pairwise effects were considered for model fit.

^b All variables are percentages, except pH.

Excel model will be available in Summer 2022

20 Coffee beverages

- Surge of canned/bottled coffee beverages
 - Hot and cold brew; nitro coffee; flavored; enhanced with nutritive and non-nutritive sweeteners, milk or milk substitutes
- pH >4.6; a_w >0.95; no added antimicrobials
 - Nitro coffee or hot-fill reduce oxygen content
 - No clear evidence of microbial spoilage
- No evidence that beverages are free of microbes, particularly cold brew
- Typically refrigerated, but not clearly marked
 - Cans/bottles mimic shelf-stable beverages
 - Some brands are validated to be shelf-stable
- Concerns with long term temperature abuse and hence with Clostridium botulinum

Antimicrobial properties of coffee beverages

Factors affecting stability

- Roast
- Extraction temperature and time
- Concentration (brix)
- ► pH
- No predictive model for safety
- Validation studies specific for given product
 - Ex. Extraction at ~70F, 11 hours, final 2.2 Brix, pH 5.4 stable through 9 months, but 1.5 Brix toxic at 4 months

22 Summary

- Refrigeration alone will not guarantee safety
 - Formulation part of the well-designed food safety system

Factors to consider

- Temperature during production, distribution, at retail, consumers
- Water activity, pH/total acidity
- Synthetic and clean label antimicrobials
- Validation needed to confirm preventive controls work as intended
- Success also depends on clear labeling and education and cooperation of consumer for safe food handling

Food Research Institute UNIVERSITY OF WISCONSIN-MADISON

Thank you for your attention

Contact: kglass@wisc.edu Web: fri.wisc.edu

