Strategies to Control *Listeria monocytogenes* in Ready-to-Eat Foods

Kathleen A. Glass, Ph.D. Distinguished Scientist, Associate Director Food Research Institute University of Wisconsin-Madison Madison, Wisconsin United States Email: kglass@wisc.edu

Washington Association for Food Protection 17 September 2021

Key Points

- Characteristics of Listeria
 - General information
 - Illness
 - Culprit foods and what we have learned
 - Contributing factors to listeriosis
- Intervention strategies
 - Environmental monitoring and control
 - Lethality
 - Growth inhibition
- Summary

Listeria: Characteristics

- 17 *Listeria* species
- L. monocytogenes human pathogen
- Prevalence
 - Bulk tank milk: 3.8% *Lm*; ~30% *Listeria* sp.
 - Seed sprouts: 3-83% Lm
 - Lettuce: 0-23% Lm
 - Smoked finfish & shellfish: 14%
- Widespread in food processing environment
 - Can be resident in processing plants
- Thrives in moist, cold, high salt environments

Impact of Listeria monocytogenes

- ~1,600 illnesses in US annually, 90% hospitalizations, ~20% mortality,
 - 85% not associated with pregnancy; median age ~70 years
 - Economic burden (2014) ~US\$ 1.8M per case
 - Hospitalizations, premature death, disability
- 3-4 weeks lag between consumption of contaminated food and illness
- 2013: whole genomic sequencing able to detect smaller outbreaks and link multistate outbreaks
- Illness rate stable for past 15+ years despite advances in sanitation and formulation strategies

š

At least 90% of people

who get Listeria food

Vitalsigns www.cdc.gov/vitalsigns

poisoning are in highly vulnerable

groups.

Learn more »

High risk foods

- High moisture, high pH with extended shelf-life
 - Particularly those without growth inhibitors
- 1998-2019 CDC report (Wise, 2019, ISOPOL)
 - Post Whole Genome Sequence (WGS) era:
 - 37.5% cheese (particularly soft cheeses)
 - 31.6% produce items
 - 15.8% ice cream
 - 11.8% deli items (including RTE meats, smoked seafood)
 - 5.3% unpasteurized milk

RAW MILK

Most recent outbreaks

		States			
Vehicle	Year	affected	illnesses	deaths	source
Frozen RTE chicken products	2021	1	3	1	Identified
Queso Fresco	2021	4	13	1	Identified
Italian deli meats	2020	4	12	1	??
enoki mushrooms	2020	17	36	4	Identified
hard boiled eggs	2020	5	8	1	Identified
unknown vehicle	2019	13	24	2	??
deli meat/cheeses	2019	5	10	1	??

Unexpected Vehicles

Deadly Outbreak Linked to Caramel Apples; CDC Warns Americans 'Not To Eat ANY'

2014-15: 35 illnesses, 7 deaths 2017: 3 illnesses

Craig Bannister | January θ, 2016 δ:22pm ET

2010-15: 10 illnesses, 3 deaths 2014+2015: 2 +1 illnesses

Listeria outbreak in Canada linked to frozen chicken; recall underway

US 2011: 139 illnesses, 29 deaths Australia 2018: 16 illnesses, 6 deaths

US 2013-2016: 9 illnesses, 3 deaths EU 2015-2018: 47 illnesses, 9 deaths

Unexpected recalls (no illnesses reported)

- 2021: dry seasoning blends
- 2021: frozen raw dog food (*Listeria* and *Salmonella*)
- 2021: muffins
- 2017: frozen pancakes
- 2016: frozen waffles

Contributing factors to listeriosis

Characteristics of *Listeria* that causes problems

- Common and persists in the environment
- More heat tolerant than Gram negative pathogens at normal pasteurization temps
 - More heat tolerant with high fat, low water activity
- Salt tolerant (grows at 13% salt; survives at 30% salt)
- Long survival in frozen and dry foods
- Grows at refrigeration temperatures

No single practice will control *Lm* contamination in foods

Control Strategy	Reduction of predicted illness	
Environmental Control		
Enhanced sanitation	5%	
Control contamination at its source	22%	
Control cross-contamination	34%	
Reformulation with growth inhibitors	96%	
Rigorous temperature control (<4°C)	9%	

Source: FSIS Best Practices Guidance for Controlling Listeria monocytogenes (Lm) in Retail Delicatessens April 2014

Kill all you can

LETHALITY

Lethality of Listeria monocytogenes

- Thermization of cheese milk
- Pathogen control in cheese brine

Thermization of cheesemilk

- Cheese made with raw milk must be aged for at least 60 days
 Soft cheeses can support growth of pathogens during aging
- FDA/Health Canada risk assessment recommends a 3-log decrease in raw milk before cheesemaking
 - Reduce risk up to 10-fold compared to milk made from non-thermized milk
- Published thermal inactivation in milk variable due to experimental design and strains used
- UW-FRI modeled and validated data to create temperature-time tables for use by artisan cheesemakers (in press, J. Dairy Sci.)
 - App in development

Cheesemilk Thermization App (in development)

Calculate:

Hold Time from Temperature and Log Reduction

Bacteria

Listeria monocytogenes

Reduction:

3-log kill

Temperature (°F)

Confirms the greater heat stability of *Listeria* compared to STEC

Hold Time (s) for 3-log reduction *Listeria monocytogenes* at 142°F:

290 s (= 4.83 min)

Provides: >6.5 log reduction Shiga-toxin producing E. coli

Disclaimers:

Ŧ

- Temperature must be taken at the coldest point of the system.
- Milk must be stirred/agitated during thermization to ensure each particle is heated.
- Time output is for hold time and does not include integrated lethality for come-up and cool down times.
- Values are valid for bovine milk with typical fat content 5% fat or less. Milk of higher fat content may require greater thermization.
- Data derived from D- and z-values from experiments Engstrom & Glass 2021, J. Dairy Science.

https://cheese.shinyapps.io/cheese-thermization/

Listeria monocytogenes in Cheese Brine

- Brine/salting important step in manufacturing cheese
 Pure salt solutions: correlation between salt and water activity
- Brine can serve as a reservoir of salt tolerant pathogens
 - Listeria monocytogenes
 - "zero tolerance" pathogen
 - Growth at 13% salt; survive in up to 30% salt; lower limit for growth $a_w 0.92$
 - Survive in untreated cheese brine for up to 270 days
 - Brine continually reused
 - No "clean break"
- Inactivation of brine with sodium hypochlorite, hydrogen peroxide

% NaCl	Aw
0.9	0.995
1.7	0.99
3.5	0.98
7.0	0.96
10.0	0.94
13.0	0.92
16.0	0.90
22.0	0.86

Commercial brines used for Listeria inactivation

Designation	Cheese type	Use temperature	pH range for brine received	Salt range for brine received	A _w range for brine received
А	Parmesan	50-53°F	5.00-5.10	21-22%	0.838-0.819
Н	Parmesan	53-55°F	5.05-5.20	27-29%	0.909-0.867
В	Brick	71-73°F	5.05-5.25	27-29%	0.777-0.766
J	Brick	40-45°F	5.40-5.55	10-19%	0.768-0.761
С	Gorgonzola	50-60°F	4.55-4.75	20-23%	0.827-0.822
D	Mozzarella	30-32°F	5.30-5.40	25-28%	0.797-0.788
Е	Feta	55°F	4.50-4.60	15-18%	0.874-0.858

Brines received August 2019, November 2019, January 2020 A_w below growth range for *Listeria*, but can survive

Reduction of *Listeria monocytogenes* by hydrogen peroxide, cheese brine, stored at 12.8°C/55°F, 7 d

■ 0 図 50 ■ 100

<1 log reduction at 1 day $^{\circ}3$ log reduction with 100 ppm H₂O₂ at 0 and 7.2°C (32 and 45°F)

Keep them out

ENVIRONMENTAL CONTROLS

Learning Lessons, the Hard Way: Importance of environmental controls

Cheese	4 years	Switzerland
	3 years*	Switzerland
	7 years	Sweden
lce cream	7 years	Finland
	5+ years	US
	1 year**	US
Poultry, cooked deli products	12 years	US

*2018-2020 34 confirmed cases, 10 deaths linked to soft brie, pasteurized sheep and goat milk cheese; *L. monocytogenes* found in 22% of environmental samples

**2014-15 hospital shake freezer; dissembled, cleaned, sanitized after contamination/outbreak; additional cases post-clean

Environmental Control program

- Clean and dry; traffic control
- Sanitary design of facilities and equipment
 - Air handling
 - Cleanable
 - Disinfect/heat sanitize
- Find it and fix it
 - Zones of Control
 - Environmental monitoring
 - Indicator organisms
 - Targeted and random sampling
 - Hygiene checks

If Zone 2 or 3 positive for *Listeria* spp., consider sampling Zone 1 Zone 1 + for *Listeria monocytogenes* considered equivalent to finished product testing for regulatory purposes

2017 FDA Draft Guidance to Control Lm in RTE Foods

- Encourages robust *Listeria* control programs
 - "Expects" Listeria to be found
- "Seek and destroy" approach
 - Environmental samples from food contact surfaces (FCSs) and non-FCSs
 - Test several hours into production and preferably before clean up
- One *Listeria* spp. positive FCS test can continue production
 - Requirements for sanitation, retesting, investigation
 - For food that supports growth:
 - 2nd positive: "hold and test" food
 - 3rd positive: suspend production

NACMCF 2021

RTE Foods Testing to Verify Process Controls

- Substantial reference to FDA *Listeria* control document and specific industry guidance documents
- Rigorous environmental monitoring program for *Listeria* sp., particularly for foods that support growth
- Test finished product for *Listeria monocytogenes* if recurring positives in Zones 1 and 2
- Short shelf life foods (e.g., cut melon, prepared sandwiches) rely more on indicator organisms testing
- Less emphasis on *Listeria* spp. testing for environments of foods that don't support growth at refrigeration or ambient temperatures
 - Assumes that the food/ingredient is not used for other susceptible foods

Keep them from growing

GROWTH INHIBITION

Reduce growth **P** Reduce risk

- FDA-CFSAN/USDA FSIS 2003 QRA
 - Foods that support growth had highest risk of causing listeriosis per serving
- FAO/WHO 2004
 - Listeriosis cause by consumption of foods with >100 CFU/g
- FSIS 2010 deli meats
 - Identified difference in rates with prepacked meats (with growth inhibitors) vs. sliced in deli (no growth inhibitors)
- Codex Alimentarius Commission
 - Limit 0.5 log increase during (labeled) shelf-life under "reasonably foreseeable conditions"

Defining growth/no growth conditions

- Freezing (-18°C)
 - Ingredients might be used in other foods that can support growth (milk shakes, salads) when refrigerated
- pH <u><</u>4.4
- Water activity <0.92
- Combination of pH \leq 5.0 and $a_w \leq$ 0.94
- NaCl <u>></u>16%
- Can reduce growth with addition of effective antimicrobials

Validation: Effect of pH and antimicrobials in meats

CSV = cultured sugar –vinegar blend as source of lactate and diacetate; added after cook during shredding 28 of 36

Validation: Effect of acid type and pH on L. monocytogenes in cheese

Test parameters:

- Moisture: 50, 56%
- NaCl: 1.25%
- pH: 6.0, 5.75, 5.5, 5.25
- Acid types: citric, lactic, acetic, propionic

····∞··· pH 5.25, 50%H2O --≜-- pH 5.50, 50%H2O - ■ - pH 5.75, 50%H2O --●-- pH 6.00, 50%H2O -●-- pH 5.25, 56%H2O --≜-- pH 5.50, 56%H2O -=-- pH 5.75, 56%H2O -●-- pH 6.00, 56%H2O Validation: Effect of cultured milk solids or cultured sugar-vinegar *L. monocytogenes,* pH 6.0, lactic acid, 56% moisture cheese, 1.25% NaCl

Engstrom et al., 2021, J. Food Protection 84:772-780

Listeria persistence on apples

- Apples inoculated with *Listeria innocua*, w/ *Botrytis cinerea* or *Penicillium expansum*, wounded/no wound, controlled atmosphere chilled storage, up to 11 months, Gala and WA-38 apples
- Gradual decrease in populations of Listeria
- Greater persistence: Gala, wounded, with *Botrytis cinerea*
- Conclusion: remove apples with visible surface wound defects prior to storage or packing
 - Washing provides 1-3 log reduction

WSU, Hamilton et al., 2021 JFP, Online prepublication

Learning lessons, the hard way:

Foods that don't support growth under normal storage, but harbor *Listeria*, can be a source of contamination to foods that can support growth

Summary: Intervention Strategies

- Kill all you can
 - Validated lethality step
 - Cooking; pasteurization; thermization
 - Brine treatments
 - Produce washes
 - HPP
- Keep them out
 - Expect to find *Listeria* in processing environment and raw ingredients
 - Persistent in equipment, facilities
 - Reintroduced by ingredients, workers
 - Requires rigorous cleaning, sanitation, monitoring to prevent from colonizing environment

Summary: Intervention Strategies

- Keep them from growing
 - Refrigeration/freezing temperatures alone insufficient
 - Prevent/reduce growth in foods by formulation
 - pH <4.4
 - Water activity < 0.92 (will still have survival)
 - Combination of pH \leq 5.0 and $a_w \leq$ 0.94
 - Adding synthetic and clean label "preservatives" provides an extra margin of safety
 - Target active components: acetic, propionic, lactic acid
 - Affected by processing, food components, temperature control, a_w , pH
 - Preventive controls must be validated in specific food/storage conditions

Resources

- FDA
 - Draft Guidance for Industry: Control of *Listeria monocytogenes* in Ready-To-Eat Foods January 2017
- Innovation Center for US Dairy
 - Control of *Listeria monocytogenes* Guidance for the U.S. Dairy 2015
 - Pathogen Control Guidance Document for U.S Dairy October 2019
 - Pathogen Control Check List October 2019
- 3M Environmental Monitoring Handbook
- AFFI Environmental Monitoring Plan
- Control of Listeria in RTE Meat Products (Comp Rev Food Safety 2006)
- Seek and Destroy: Process Controls RTE Meat/Poultry (JFP 2015)
- Universities (IL, Penn State, Cornell, WI, OR etc.).
 - Retail/delis
 - Validation guidance / challenge studies
- Virtual Workshop on Environmental Controls/Testing, Sept. 27-30
 - Platform presentations, small group exercises; registration link fri.wisc.edu

Food Research Institute UNIVERSITY OF WISCONSIN-MADISON

Thank you for your attention Contact: kglass@wisc.edu Web: fri.wisc.edu

