

Determination of thermal inactivation parameters of *Salmonella* in non-fat dry milk and hydrated non-fat milk.

Amninder Singh Sekhon

Graduate Research Assistant School of Food Science Washington State University

Why Salmonella?

- In the U.S., 1.2 million illnesses with 23,000 hospitalizations and 450 deaths annually (FDA, 2019)
- Infants, elderly and immuno-compromised individuals are at high risk
- The infectious dose for *Salmonella* infection is <1,000 cells, but can be as low as 1 cell (Pal et al., 2016)
- Salmonella is responsible for the most number of bacterial foodborne infections (Dewey-Mattia et al., 2018)

Salmonella

- *Enterobacteriaceae* family
- Gram-negative, rod-shaped bacilli
- Includes two species:
 - S. enterica
 - S. bongori
- *S. enterica* can be further divided into six subspecies using their phenotypic profile
- *S. enterica* ssp. *enterica* serovars can be associated with human infections

Concern in nonfat dry milk (NFDM)

- Used as an ingredient in many foods, especially infant formula
- The incidence of salmonellosis among infants is higher compared to other age groups
- Post pasteurization contamination of milk can occur
- Presence of *Salmonella*, even in low numbers in low water activity (a_w) foods such as NFDM can pose a significant health risk
- Causes severe enteric (typhoid) fever and enterocolitis

Research objective

- To determine the survivability of *Salmonella* in NFDM and hydrated NFDM during 90 days of storage
- To determine the effect of extended storage of NFDM on the thermal resistance (D- and z-values) of *Salmonella*

Experimental Design

- This study was designed as a randomized complete block with repeated measures, with three replications as blocks
- The linear regression graphs for calculating D- and *z*-values were plotted using Microsoft Excel 2019
- Statistical differences were calculated using ANOVA at $P \leq 0.05$ using SAS® University Edition

Materials and methods

Salmonella enterica subsp. enterica serovars used in the study:

- Enteritidis (ATCC® BAA-708)
- Montevideo (ATCC® BAA-710)
- Newport (ATCC® 6962)
- Senftenberg 775W (ATCC® 43845)
- Typhimurium (ATCC® 14028)

Salmonella culture propagation and inoculum preparation

Frozen beads

10 mL BHI broth

Propagated cultures

37°C/24 hrs.

Master inoculum

Harvesting the lawns

Bacterial lawns

Non fat dry milk inoculation

- NFDM was mist inoculated and dried back to original pre-inoculation weight at 37°C to achieve ~8 log CFU/g Salmonella in NFDM
- The inoculated NFDM was sealed with airtight lids and stored at room temperature (~25°C)

Mist inoculation of NFDM

Drying of NFDM

Thermal treatments

• D- values were determined at 80, 85 and 90°C for NFDM; and 59, 62 and 65°C for hydrated NFDM

Immersing TDT discs in hot water bath

Transferring treated TDT discs to ice water bath

Thermocouples monitoring the product and water temperature

Heat treatments

	D-value Temp. (°C)	Sampling time (minutes)
Nonfat dry milk (NFDM)	80	14
	85	7
	90	3.5
Hydrated NFDM	59	3
	62	1.5
	65	0.5

Sampling times used for calculating D-values at indicated temperatures

Sampling and enumeration

- Heat treated NFDM or hydrated NFDM were transferred to stomacher bags, and then serially diluted using 0.1% peptone water solution
- Salmonella was enumerated using **injury recovery media** i.e. brain heart infusion (BHI) agar overlaid with xylose lysine deoxycholate (XLD) agar, and incubated at 37°C for 24 hours

Culture confirmation

- All cultures were confirmed using API 20E before starting the experiment
- Colonies from NFDM and hydrated NFDM on enumeration media were also confirmed using API 20E

API confirmation

Salmonella survival

Survival of 5- serovar *Salmonella* in NFDM and hydrated NFDM on the indicated days

Salmonella D-values in NFDM

Storage day	80°C	85°C	90°C	z-value
1	17.9 ± 0.33^{a}	9.1 ± 0.25^{a}	$4.4\pm0.09^{\mathrm{a}}$	$16.3\pm0.30^{\mathrm{a}}$
30	18.5 ± 0.87^{a}	9.0 ± 0.49^{a}	$4.3\pm0.27^{\mathrm{a}}$	$16.0\pm0.16^{\rm a}$
60	18.6 ± 0.09^{a}	9.1 ± 0.26^{a}	$4.5\pm0.39^{\mathrm{a}}$	16.4 ± 1.07^{a}
90	18.8 ± 0.33^{a}	9.1 ± 0.27^{a}	$4.8\pm0.17^{\mathrm{a}}$	$16.9\pm0.04^{\rm a}$

The D-(min) and z-values (°C) (mean \pm SE) of 5-serovar *Salmonella* cocktail in nonfat dry milk on indicated temperatures and days

Salmonella D-values in hydrated NFDM

Storage day	59°C	62°C	65°C	z-value
1	5.7 ± 0.33^{a}	2.3 ± 0.12^{a}	0.6 ± 0.09^{a}	6.4 ± 0.18^{a}
30	6.1 ± 0.19^{a}	2.3 ± 0.14^{a}	0.6 ± 0.27^{a}	6.1 ± 0.04^{a}
60	6.3 ± 0.21^{a}	2.4 ± 0.15^{a}	$0.7\pm0.39^{\mathrm{a}}$	6.2 ± 0.35^{a}
90	6.4 ± 0.25^{a}	2.5 ± 0.12^{a}	0.7 ± 0.17^{a}	6.2 ± 0.10^{a}

The D-(min) and z-values (°C) (mean \pm SE) of 5-serovar *Salmonella* cocktail in hydrated nonfat dry milk on indicated temperatures and days

pH and a_w

Storage day	NFDM	Hydrated NFDM	Water used for hydration
1	6.62 ± 0.03^{a}	$6.53\pm0.02^{\rm a}$	5.50 ± 0.15^{a}
30	5.30 ± 0.01^{b}	$6.53\pm0.01^{\rm a}$	5.84 ± 0.31^{a}
60	$5.46\pm0.07^{\text{b}}$	$6.49\pm0.02^{\rm a}$	6.84 ± 0.37^{a}
90	$5.30\pm0.02^{\text{b}}$	$6.60\pm0.03^{\rm a}$	6.39 ± 0.58^a

Storage day	a _w
1	$0.20\pm0.0^{\rm a}$
30	$0.23\pm0.01^{\text{b}}$
60	$0.23\pm0.01^{\text{b}}$
90	$0.25\pm0.0^{\text{b}}$

pH of nonfat dry milk (NFDM), hydrated NFDM and water used for hydration on the indicated storage days

 a_w of nonfat dry milk on indicated storage days

Conclusions

- Contrary to common expectation, *Salmonella* heat resistance did not increase during the dry storage of 90 days
- This study will be continued to determine the changes in thermal resistance due to longer storage (up to one year)
- Consumers should take extra care in storing the NFDM to avoid *Salmonella* contamination
- To study the effect of fat on the survivability and thermal resistance of *Salmonella*, an extended storage study using whole milk powder is also under progress

References

- Dewey-Mattia, D., Manikonda, K., Hall, A. J., Wise, M. E., & Crowe, S. J. (2018). Surveillance for foodborne disease outbreaks United States, 2009–2015. *MMWR Surveillance Summaries*, 67(10), 1–11. https://doi.org/10.15585/mmwr.ss6710a1
- Get the facts about Salmonella | FDA. (2019). Retrieved September 11, 2019, from <u>https://www.fda.gov/animal-veterinary/animal-health-literacy/get-facts-about-salmonella</u>
- Pal, M., Alemu, J., Mulu, S., Parmar, O. K. B. C., & Nayak, J. B. (2016). Microbial and hygienic aspects of dry milk powder. *Beverage & Food World*, 43(2), 28–31.

Thank you

